R and Data Mining: Examples and Case Studies

Yanchang Zhao
yanchang@rdatamining.com
http://www.RDataMining.com

April 26, 2013

1©2012-2013 Yanchang Zhao. Published by Elsevier in December 2012. All rights reserved.
Chapter 10

Text Mining

This chapter presents examples of text mining with R. Twitter\(^3\) text of @RDataMining is used as the data to analyze. It starts with extracting text from Twitter. The extracted text is then transformed to build a document-term matrix. After that, frequent words and associations are found from the matrix. A word cloud is used to present important words in documents. In the end, words and tweets are clustered to find groups of words and also groups of tweets. In this chapter, “tweet” and “document” will be used interchangeably, so are “word” and “term”.

There are three important packages used in the examples: `twitterR`, `tm` and `wordcloud`. Package `twitterR` [Gentry, 2012](http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/) provides access to Twitter data, `tm` [Feinerer, 2012](http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/) provides functions for text mining, and `wordcloud` [Fellows, 2012](http://cran.r-project.org/web/packages/twitterR/vignettes/twitterR.pdf) visualizes the result with a word cloud\(^2\).

10.1 Retrieving Text from Twitter

Twitter text is used in this chapter to demonstrate text mining. Tweets are extracted from Twitter with the code below using `userTimeline()` in package `twitterR` [Gentry, 2012](http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/). Another way to retrieve text from Twitter is using package `XML` [Lang, 2012](http://cran.r-project.org/web/packages/twitterR/vignettes/twitterR.pdf), and an example on that is given at http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/.

For readers who have no access to Twitter, the tweets data “rdmTweets.RData” can be downloaded at http://www.rdatamining.com/data. Then readers can skip this section and proceed directly to [Section 10.2](#).

Note that the Twitter API requires authentication since March 2013. Before running the code below, please complete authentication by following instructions in “Section 3: Authentication with OAuth” in the `twitterR` vignettes (http://cran.r-project.org/web/packages/twitterR/vignettes/twitterR.pdf).

```r
> library(twitterR)
> # retrieve the first 200 tweets (or all tweets if fewer than 200) from the
> # user timeline of @rdatamining
> rdmTweets <- userTimeline("rdatamining", n=200)
> (nDocs <- length(rdmTweets))

[1] 154
```

Next, we have a look at the five tweets numbered 11 to 15.

```r
> rdmTweets[11:15]
```

\(^3\)http://www.twitter.com

\(^2\)http://en.wikipedia.org/wiki/Word_cloud
CHAPTER 10. TEXT MINING

With the above code, each tweet is printed in one single line, which may exceed the boundary of paper. Therefore, the following code is used in this book to print the five tweets by wrapping the text to fit the width of paper. The same method is used to print tweets in other codes in this chapter.

```r
> for (i in 11:15) {
  + cat(paste("[["", i, "] "", sep=""))
  + writeLines(strwrap(rdmTweets[[i]]$getText(), width=73))
  + }

[[11]] Slides on massive data, shared and distributed memory, and concurrent programming: bigmemory and foreach http://t.co/a6bQzxj5
[[12]] The R Reference Card for Data Mining is updated with functions & packages for handling big data & parallel computing. http://t.co/FHoVZCyk
[[13]] Post-doc on Optimizing a Cloud for Data Mining primitives, INRIA, France http://t.co/cL28STP0
[[14]] Chief Scientist - Data Intensive Analytics, Pacific Northwest National Laboratory (PNNL), US http://t.co/0GdzxINt
[[15]] Top 10 in Data Mining http://t.co/7kAuNvuf
```

10.2 Transforming Text

The tweets are first converted to a data frame and then to a corpus, which is a collection of text documents. After that, the corpus can be processed with functions provided in package `tm` [Feinerer, 2012].

```r
> # convert tweets to a data frame
df <- do.call("rbind", lapply(rdmTweets, as.data.frame))
dim(df)
[1] 154 10

> library(tm)
> # build a corpus, and specify the source to be character vectors
> myCorpus <- Corpus(VectorSource(df$x))
```

After that, the corpus needs a couple of transformations, including changing letters to lower case, and removing punctuations, numbers and stop words. The general English stop-word list is tailored here by adding “available” and “via” and removing “r” and “big” (for big data). Hyperlinks are also removed in the example below.

```r
> # convert to lower case
> myCorpus <- tm_map(myCorpus, tolower)
> # remove punctuation
> myCorpus <- tm_map(myCorpus, removePunctuation)
> # remove numbers
> myCorpus <- tm_map(myCorpus, removeNumbers)
> # remove URLs
> removeURL <- function(x) gsub("http://[:alnum:]+", ",", x)
> myCorpus <- tm_map(myCorpus, removeURL)
> # add two extra stop words: "available" and "via"
> myStopwords <- c(stopwords('english'), "available", "via")
> # remove "r" and "big" from stopwords
> myStopwords <- setdiff(myStopwords, c("r", "big"))
> # remove stopwords from corpus
> myCorpus <- tm_map(myCorpus, removeWords, myStopwords)
```
10.3 STEMMING WORDS

In the above code, `tm_map()` is an interface to apply transformations (mappings) to corpora. A list of available transformations can be obtained with `getTransformations()`, and the mostly used ones are `as PlainTextDocument()`, `removeNumbers()`, `removePunctuation()`, `removeWords()`, `stemDocument()` and `stripWhitespace()`. A function `removeURL()` is defined above to remove hypelinks, where pattern “http://[:alnum:]*” matches strings starting with “http” and then followed by any number of alphabetic characters and digits. Strings matching this pattern are removed with `gsub()`. The above pattern is specified as a regular expression, and detail about that can be found by running `?regex` in R.

10.3 Stemming Words

In many applications, words need to be stemmed to retrieve their radicals, so that various forms derived from a stem would be taken as the same when counting word frequency. For instance, words “update”, “updated” and “updating” would all be stemmed to “updat”. Word stemming can be done with the snowball stemmer, which requires packages `Snowball`, `RWeka`, `rJava` and `RWekajers`. After that, we can complete the stems to their original forms, i.e., “update” for the above example, so that the words would look normal. This can be achieved with function `stemCompletion()`.

```r
> # keep a copy of corpus to use later as a dictionary for stem completion
> myCorpusCopy <- myCorpus
> # stem words
> myCorpus <- tm_map(myCorpus, stemDocument)
> # inspect documents (tweets) numbered 11 to 15
> # inspect(myCorpus[[11:15]])
> # The code below is used for to make text fit for paper width
> for (i in 11:15) {
+   cat(paste("[", i, "] ", sep=""))
+   writeLines(strwrap(myCorpus[[i]], width=73))
+ }

[[11]] slide massiv data share distrib memoryand concurr program bigmemori foreach
[[12]] r refer card data mine updat function packag handl big data parallel comput
[[13]] postdoc optim cloud data mine primit inria franc
[[14]] chief scientist data intens analyt pacif northwest nation laboratori pnpl
[[15]] top data mine

After that, we use `stemCompletion()` to complete the stems with the unstemmed corpus `myCorpusCopy` as a dictionary. With the default setting, it takes the most frequent match in dictionary as completion.

```r
> # stem completion
> myCorpus <- tm_map(myCorpus, stemCompletion, dictionary=myCorpusCopy)

Then we have a look at the documents numbered 11 to 15 in the built corpus.

```r
> inspect(myCorpus[[11:15]])

[[11]] slides massive data share distributed memoryand concurrent programming foreach
[[12]] r reference card data miners updated functions package handling big data parallel computing
As we can see from the above results, there are something unexpected in the above stemming and completion.

1. In both the stemmed corpus and the completed one, “memoryand” is derived from “... memory, and...” in the original tweet.

2. In tweet 11, word “bigmemory” is stemmed to “bignemori”, and then is removed during stem completion.

3. Word “mining” in tweets 12, 13 & 15 is first stemmed to “mine” and then completed to “miners”.

4. “Laboratory” in tweet 14 is stemmed to “laboratori” and then also disappears after completion.

In the above issues, point 1 is caused by the missing of a space after the comma. It can be easily fixed by replacing comma with space before removing punctuation marks in Section 10.2. For points 2 & 4, we haven’t figured out why it happened like that. Fortunately, the words involved in points 1, 2 & 4 are not important in #RDataMining tweets and ignoring them would not bring any harm to this demonstration of text mining.

Below we focus on point 3, where word “mining” is first stemmed to “mine” and then completed to “miners”, instead of “mining”, although there are many instances of “mining” in the tweets, compared to only two instances of “miners”. There might be a solution for the above problem by changing the parameters and/or dictionaries for stemming and completion, but we failed to find one due to limitation of time and efforts. Instead, we chose a simple way to get around of that by replacing “miners” with “mining”, since the latter has many more cases than the former in the corpus. The code for the replacement is given below.

```r
> # count frequency of "mining"
> miningCases <- tm_map(myCorpusCopy, grep, pattern="\<mining\")
> sum(unlist(miningCases))

[1] 47

> # count frequency of "miners"
> minerCases <- tm_map(myCorpusCopy, grep, pattern="\<miners\")
> sum(unlist(minerCases))

[1] 2

> # replace "miners" with "mining"
> myCorpus <- tm_map(myCorpusCopy, gsub, pattern="miners", replacement="mining")
```

In the first call of function `tm_map()` in the above code, `grep()` is applied to every document (tweet) with argument “pattern="\<mining\"". The pattern matches words starting with “mining”, where “\<" matches the empty string at the beginning of a word. This ensures that text “rdatamining” would not contribute to the above counting of “mining”.

### 10.4 Building a Term-Document Matrix

A term-document matrix represents the relationship between terms and documents, where each row stands for a term and each column for a document, and an entry is the number of occurrences of
the term in the document. Alternatively, one can also build a document-term matrix by swapping
row and column. In this section, we build a term-document matrix from the above processed
corpus with function `TermDocumentMatrix()`. With its default setting, terms with less than three
characters are discarded. To keep “r” in the matrix, we set the range of `wordLengths` in the
example below.

```r
> myTdm <- TermDocumentMatrix(myCorpus, control=list(wordLengths=c(1,Inf)))
> myTdm

A term-document matrix (444 terms, 154 documents)

Non-/sparse entries: 1085/67291
Sparsity : 98%
Maximal term length: 27
Weighting : term frequency (tf)

As we can see from the above result, the term-document matrix is composed of 444 terms and
154 documents. It is very sparse, with 98% of the entries being zero. We then have a look at the
first six terms starting with “r” and tweets numbered 101 to 110.

```r
> idx <- which(dimnames(myTdm)$Terms == "r")
> inspect(myTdm[idx+(0:5),101:110])

A term-document matrix (6 terms, 10 documents)

Non-/sparse entries: 9/51
Sparsity : 85%
Maximal term length: 12
Weighting : term frequency (tf)

<table>
<thead>
<tr>
<th>Docs</th>
<th>Terms</th>
<th>101</th>
<th>102</th>
<th>103</th>
<th>104</th>
<th>105</th>
<th>106</th>
<th>107</th>
<th>108</th>
<th>109</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ramachandran</td>
<td>0</td>
</tr>
<tr>
<td>random</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ranked</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>rapidminer</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>rdatamining</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that the parameter to control word length used to be `minWordLength` prior to version
0.5-7 of package `tm`. The code to set the minimum word length for old versions of `tm` is below.

```r
> myTdm <- TermDocumentMatrix(myCorpus, control=list(minWordLength=1))

```

The list of terms can be retrieved with `rownames(myTdm)`. Based on the above matrix, many
data mining tasks can be done, for example, clustering, classification and association analysis.

When there are too many terms, the size of a term-document matrix can be reduced by
selecting terms that appear in a minimum number of documents, or filtering terms with TF-IDF
(term frequency-inverse document frequency) [Wu et al., 2008](https://example.com).

## 10.5 Frequent Terms and Associations

We have a look at the popular words and the association between words. Note that there are 154
tweets in total.

```r
> # inspect frequent words
> inspectTweets(frequentTerms(myTdm, lowfreq=10))
```
In the code above, `findFreqTerms()` finds frequent terms with frequency no less than ten. Note that they are ordered alphabetically, instead of by frequency or popularity.

To show the top frequent words visually, we next make a barplot for them. From the term-document matrix, we can derive the frequency of terms with `rowSums()`. Then we select terms that appear in ten or more documents and shown them with a barplot using package `ggplot2` [Wickham, 2009]. In the code below, `geom="bar"` specifies a barplot and `coord_flip()` swaps x- and y-axis.

The barplot in [Figure 10.1] clearly shows that the three most frequent words are “r”, “data” and “mining”.

```r
> termFrequency <- rowSums(as.matrix(myTdm))
> termFrequency <- subset(termFrequency, termFrequency>=10)
> library(ggplot2)
> qplot(names(termFrequency), termFrequency, geom="bar", xlab="Terms") + coord_flip()
```

![Figure 10.1: Frequent Terms](image)

Alternatively, the above plot can also be drawn with `barplot()` as below, where `las` sets the direction of x-axis labels to be vertical.

```r
> barplot(termFrequency, las=2)
```

We can also find what are highly associated with a word with function `findAssocs()`. Below we try to find terms associated with “r” (or “mining”) with correlation no less than 0.25, and the words are ordered by their correlation with “r” (or “mining”).

```r
> # which words are associated with "r"?
> findAssocs(myTdm, 'r', 0.25)
```
10.6  Word Cloud

After building a term-document matrix, we can show the importance of words with a word cloud (also known as a tag cloud), which can be easily produced with package wordcloud [Fellows, 2012]. In the code below, we first convert the term-document matrix to a normal matrix, and then calculate word frequencies. After that, we set gray levels based on word frequency and use wordcloud() to make a plot for it. With wordcloud(), the first two parameters give a list of words and their frequencies. Words with frequency below three are not plotted, as specified by min.freq=3. By setting random.order=F, frequent words are plotted first, which makes them appear in the center of cloud. We also set the colors to gray levels based on frequency. A colorful cloud can be generated by setting colors with rainbow().

> library(wordcloud)
> m <- as.matrix(myTdm)
> # calculate the frequency of words and sort it descendingly by frequency
> wordFreq <- sort(rowSums(m), decreasing=TRUE)
> # word cloud
> set.seed(375) # to make it reproducible
> grayLevels <- gray( (wordFreq+10) / (max(wordFreq)+10) )
> wordcloud(words=names(wordFreq), freq=wordFreq, min.freq=3, random.order=F, +
    colors=grayLevels)
The above word cloud clearly shows again that “R”, “data” and “mining” are the top three words, which validates that the @RDataMining tweets present information on R and data mining. Some other important words are “analysis”, “examples”, “slides”, “tutorial” and “package”, which shows that it focuses on documents and examples on analysis and R packages. Another set of frequent words, “research”, “postdoctoral” and “positions”, are from tweets about vacancies on post-doctoral and research positions. There are also some tweets on the topic of social network analysis, as indicated by words “network” and “social” in the cloud.

10.7 Clustering Words

We then try to find clusters of words with hierarchical clustering. Sparse terms are removed, so that the plot of clustering will not be crowded with words. Then the distances between terms are calculated with dist() after scaling. After that, the terms are clustered with hclust() and the dendrogram is cut into 10 clusters. The agglomeration method is set to ward, which denotes the increase in variance when two clusters are merged. Some other options are single linkage, complete linkage, average linkage, median and centroid. Details about different agglomeration methods can be found in data mining textbooks [Han and Kamber, 2000; Hand et al., 2001; Witten and Frank, 2005].

```r
> # remove sparse terms
> myTdm2 <- removeSparseTerms(myTdm, sparse=0.95)
> m2 <- as.matrix(myTdm2)
> # cluster terms
```
10.8. CLUSTERING TWEETS

> distMatrix <- dist(scale(m2))
> fit <- hclust(distMatrix, method="ward")

> plot(fit)
> # cut tree into 10 clusters
> rect.hclust(fit, k=10)
> (groups <- cutree(fit, k=10))

<table>
<thead>
<tr>
<th>analysis</th>
<th>applications</th>
<th>code</th>
<th>computing</th>
<th>data</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>introduction</td>
<td>mining</td>
<td>network</td>
<td>package</td>
<td>parallel</td>
<td>positions</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>postdoctoral</td>
<td>research</td>
<td>series</td>
<td>slides</td>
<td>social</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>tutorial</td>
<td>users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cluster Dendrogram

Figure 10.3: Clustering of Words

In the above dendrogram, we can see the topics in the tweets. Words “analysis”, “network” and “social” are clustered into one group, because there are a couple of tweets on social network analysis. The second cluster from left comprises “positions”, “postdoctoral” and “research”, and they are clustered into one group because of tweets on vacancies of research and postdoctoral positions. We can also see cluster on time series, R packages, parallel computing, R codes and examples, and tutorial and slides. The rightmost three clusters consists of “r”, “data” and “mining”, which are the keywords of @RDataMining tweets.

10.8 Clustering Tweets

Tweets are clustered below with the k-means and the k-medoids algorithms.
10.8.1 Clustering Tweets with the $k$-means Algorithm

We first try $k$-means clustering, which takes the values in the matrix as numeric. We transpose the term-document matrix to a document-term one. The tweets are then clustered with \texttt{kmeans()} with the number of clusters set to eight. After that, we check the popular words in every cluster and also the cluster centers. Note that a fixed random seed is set with \texttt{set.seed()} before running \texttt{kmeans()}, so that the clustering result can be reproduced. It is for the convenience of book writing, and it is unnecessary for readers to set a random seed in their code.

\begin{verbatim}
> # transpose the matrix to cluster documents (tweets)
> m3 <- t(m2)
> # set a fixed random seed
> set.seed(122)
> # k-means clustering of tweets
> k <- 8
> kmeansResult <- kmeans(m3, k)
> # cluster centers
> round(kmeansResult$centers, digits=3)

   analysis applications code computing data examples introduction mining network
1  0.040   0.040   0.240   0.000   0.040   0.320   0.040   0.120   0.080
2  0.000   0.158   0.053   0.053   1.526   0.105   0.053   1.158   0.000
3  0.857   0.000   0.000   0.000   0.000   0.071   0.143   0.071   1.000
4  0.000   0.000   0.000   1.000   0.000   0.000   0.000   0.000   0.000
5  0.037   0.074   0.019   0.019   0.426   0.037   0.093   0.407   0.000
6  0.000   0.000   0.000   0.000   0.000   0.100   0.000   0.000   0.000
7  0.533   0.000   0.067   0.000   0.333   0.200   0.067   0.200   0.067
8  0.000   0.111   0.000   0.000   0.556   0.000   0.000   0.111   0.000

   package parallel positions postdoctoral r research series slides social
1  0.080   0.000   0.000   0.000   0.000   1.320   0.000   0.040   0.000
2  0.368   0.053   0.000   0.000   0.947   0.053   0.000   0.053   0.000
3  0.071   0.000   0.143   0.143   0.214   0.071   0.000   0.071   0.786
4  0.125   0.750   0.000   0.000   1.000   0.000   0.000   0.125   0.000
5  0.000   0.000   0.093   0.093   0.000   0.000   0.019   0.074   0.000
6  1.200   0.100   0.000   0.000   0.600   0.100   0.000   0.100   0.000
7  0.000   0.000   0.000   0.000   1.000   0.000   0.000   0.400   0.533   0.000
8  0.000   0.000   0.444   0.444   0.000   1.333   0.000   0.000   0.111

   time tutorial users
1  0.040   0.200   0.160
2  0.000   0.000   0.158
3  0.000   0.286   0.071
4  0.000   0.125   0.250
5  0.019   0.111   0.019
6  0.000   0.100   0.100
7  0.400   0.000   0.400
8  0.000   0.000   0.000
\end{verbatim}

To make it easy to find what the clusters are about, we then check the top three words in every cluster.

\begin{verbatim}
> for (i in 1:k) {
+   cat(paste("cluster ", i, ": ", sep=""))
+   s <- sort(kmeansResult$centers[i,], decreasing=T)
+   cat(names(s)[1:3], \n"
+   # print the tweets of every cluster
\end{verbatim}
10.8. CLUSTERING TWEETS

+ # print(rdm Tweets[which(kmeansResult$cluster==i)])
+ }

cluster 1: r examples code
cluster 2: data mining r
cluster 3: network analysis social
cluster 4: computing r parallel
cluster 5: data mining tutorial
cluster 6: package r examples
cluster 7: r analysis slides
cluster 8: research data positions

From the above top words and centers of clusters, we can see that the clusters are of different topics. For instance, cluster 1 focuses on R codes and examples, cluster 2 on data mining with R, cluster 4 on parallel computing in R, cluster 6 on R packages and cluster 7 on slides of time series analysis with R. We can also see that, all clusters, except for cluster 3, 5 & 8, focus on R. Cluster 3, 5 & 8 are about general information on data mining and are not limited to R. Cluster 3 is on social network analysis, cluster 5 on data mining tutorials, and cluster 8 on positions for data mining research.

10.8.2 Clustering Tweets with the $k$-medoids Algorithm

We then try $k$-medoids clustering with the Partitioning Around Medoids (PAM) algorithm, which uses medoids (representative objects) instead of means to represent clusters. It is more robust to noise and outliers than $k$-means clustering, and provides a display of the silhouette plot to show the quality of clustering. In the example below, we use function pamk() from package fpc [Hennig, 2010], which calls the function pam() with the number of clusters estimated by optimum average silhouette.

> library(fpc)
> # partitioning around medoids with estimation of number of clusters
> pamResult <- pamk(m3, metric="manhattan")
> # number of clusters identified
> (k <- pamResult$nc)

[1] 9

> pamResult <- pamResult$pamobject
> # print cluster medoids
> for (i in 1:k) {
+ cat(paste("cluster", i, ": "))
+ cat(colnames(pamResult$medoids)[which(pamResult$medoids[i,]==1)], "\n")
+ # print tweets in cluster i
+ # print(rdm Tweets[pamResult$clustering==i])
+ }

cluster 1: data positions research
cluster 2: computing parallel r
cluster 3: mining package r
cluster 4: data mining
cluster 5: analysis network social tutorial
cluster 6: r
cluster 7:
cluster 8: examples r
cluster 9: analysis mining series time users
> # plot clustering result
> layout(matrix(c(1,2),2,1)) # set to two graphs per page
> plot(pamResult, color=F, labels=4, lines=0, cex=.8, col.clus=1, 
+     col.p=pamResult$clustering)
> layout(matrix(1)) # change back to one graph per page

![Clusters of Tweets](image)

Figure 10.4: Clusters of Tweets

In Figure 10.4 the first chart is a 2D “clusplot” (clustering plot) of the k clusters, and the second one shows their silhouettes. With the silhouette, a large $s_i$ (almost 1) suggests that
10.9. Packages, Further Readings and Discussions

In addition to frequent terms, associations and clustering demonstrated in this chapter, some other possible analysis on the above Twitter text is graph mining and social network analysis. For example, a graph of words can be derived from a document-term matrix, and then we can use techniques for graph mining to find links between words and groups of words. A graph of tweets (documents) can also be generated and analyzed in a similar way. It can also be presented and analyzed as a bipartite graph with two disjoint sets of vertices, that is, words and tweets. We will demonstrate social network analysis on the Twitter data in [Chapter 11] Social Network Analysis.

Some R packages for text mining are listed below.

- **Package tm** [Feinerer, 2012]: A framework for text mining applications within R.
- **Package tm.plugin.mail** [Feinerer, 2010]: Text Mining E-Mail Plug-In. A plug-in for the tm text mining framework providing mail handling functionality.
- **package textcat** [Hornik et al., 2012] provides n-Gram Based Text Categorization.
- **lda** [Chang, 2011] fit topic models with LDA (latent Dirichlet allocation)
- **topicmodels** [Grünn and Hornik, 2011] fit topic models with LDA and CTM (correlated topics model)

For more information and examples on text mining with R, some online resources are:

- **Introduction to the tm Package – Text Mining in R**  
  [http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf](http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf)

- **Text Mining Infrastructure in R** [Feinerer et al., 2008]  
  [http://www.jstatsoft.org/v25/i05](http://www.jstatsoft.org/v25/i05)

- **Text Mining Handbook**  

- **Distributed Text Mining in R**  
  [http://epub.wu.ac.at/3034/](http://epub.wu.ac.at/3034/)

- **Text mining with Twitter and R**  